If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33x^2-33x-9=0
a = 33; b = -33; c = -9;
Δ = b2-4ac
Δ = -332-4·33·(-9)
Δ = 2277
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2277}=\sqrt{9*253}=\sqrt{9}*\sqrt{253}=3\sqrt{253}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-3\sqrt{253}}{2*33}=\frac{33-3\sqrt{253}}{66} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+3\sqrt{253}}{2*33}=\frac{33+3\sqrt{253}}{66} $
| (2^-1)^x2+^2x-^8=(2-^3)^x-^2 | | (5x+2)+(x+10)+(x+16)=x | | x²+14x+49=81 | | 4x=4^2 | | 4+5x=2x-17 | | (X-5)(40-x)=4(x-5)) | | (X-5)(40-x)=4(x-) | | (4x+3/2x+5)=1 | | -88=8(1-5n) | | 2(4u-10)=60 | | 5x+35=-17x | | 1/7u-4=8 | | q/4+4=3 | | 2a5=19 | | -1(x)=9-6x | | 48/1=300/a | | 1/4g+6=10 | | f-1)=9-6(-1) | | 3x/15=3/15 | | 2^x+2^3-^x=9 | | 0=4+p/3 | | 9n+5(5n-8)=13 | | 4x+2=7x-14 | | 3x+0.3=10 | | 7n^2=21 | | X/3-2/5=2x/15-3/5 | | 2(10-3c)=c+4 | | 5x-7÷2x+3=2 | | X=4/5x+1 | | 10(3m-4)=30-5m | | 3(2x-1)+2x(2x-1)=11 | | y+24=24 |